get_les()
returns
Legislative Effectiveness Scores data
from the Center for Effective Lawmaking.
Arguments
- chamber
Which chamber to get data for. Options are:
"house"
,"h"
,"hr"
: House data only."senate"
,"s"
,"sen"
: Senate data only.
These options are case-insensitive. Any other argument results in an error.
Note: Unlike the Voteview functions, there is no
"all"
option. You must specify either House or Senate data, since there is no "default" option.There are non-trivial differences between the House and Senate datasets, so take care when joining House and Senate data. Important differences include:
Legislator names are formatted differently. The Senate data has
first
andlast
name columns, while the House data has a singlethomas_name
column.The
year
column refers to the first year of the Congress in the House data, butyear
refers to the preceding election year in the Senate data. Thus, theyear
for House members is one after that of senators in the same Congress.
- les_2
Whether to use LES 2.0 (instead of Classic Legislative Effectiveness Scores). LES 2.0 credits lawmakers when language from their sponsored bills is included in other legislators' bills that become law. LES 2.0 is only available for the 117th Congress. Classic LES is available for the 93rd through 117th Congresses.
- local_path
(Optional) A file path for reading from a local file. If no
local_path
is specified, will read data from the Center for Effective Lawmaking website.
Details
See the Center for Effective Lawmaking website for more information on their data.
The Legislative Effectiveness Score methodology was introduced in:
Volden, C., & Wiseman, A. E. (2014). Legislative effectiveness in the United States Congress: The lawmakers. Cambridge University Press. doi:10.1017/CBO9781139032360
Examples
if (FALSE) { # interactive()
# Classic LES data (93rd-117th Congresses)
get_les("house", les_2 = FALSE)
get_les("senate", les_2 = FALSE)
}
# LES 2.0 (117th Congress)
get_les("house", les_2 = TRUE)
#> # A tibble: 454 × 60
#> thomas_num thomas_name icpsr congress year st_name cd dem elected
#> <int> <chr> <int> <int> <int> <fct> <int> <lgl> <int>
#> 1 10700 Adams, Alma 21545 117 2021 NC 12 TRUE 2014
#> 2 10701 Aderholt, Robert 29701 117 2021 AL 4 FALSE 1996
#> 3 10702 Aguilar, Pete 21506 117 2021 CA 31 TRUE 2014
#> 4 10703 Allen, Rick 21516 117 2021 GA 12 FALSE 2014
#> 5 10704 Allred, Colin 21900 117 2021 TX 32 TRUE 2018
#> 6 10705 Amodei, Mark 21196 117 2021 NV 2 FALSE 2011
#> 7 10706 Armstrong, Kelly 21901 117 2021 ND 1 FALSE 2018
#> 8 10707 Arrington, Jodey 21700 117 2021 TX 19 FALSE 2016
#> 9 10708 Auchincloss, Jake 22100 117 2021 MA 4 TRUE 2020
#> 10 10709 Axne, Cindy 21902 117 2021 IA 3 TRUE 2018
#> # ℹ 444 more rows
#> # ℹ 51 more variables: female <lgl>, votepct <int>, dwnom1 <dbl>, dwnom2 <dbl>,
#> # deleg_size <int>, speaker <lgl>, subchr <lgl>, afam <lgl>, latino <lgl>,
#> # votepct_sq <int>, power <lgl>, chair <lgl>, state_leg <lgl>,
#> # state_leg_prof <dbl>, majority <lgl>, maj_leader <lgl>, min_leader <lgl>,
#> # meddist <dbl>, majdist <dbl>, leslag <dbl>, freshman <lgl>,
#> # seniority <int>, party_code <int>, bioname <chr>, bioguide_id <chr>, …
get_les("senate", les_2 = TRUE)
#> # A tibble: 100 × 60
#> last first state congress cgnum icpsr year dem majority elected female
#> <chr> <chr> <fct> <int> <int> <int> <int> <lgl> <lgl> <int> <lgl>
#> 1 Blunt Roy MO 117 2461 29735 2020 FALSE FALSE 2010 FALSE
#> 2 Brown Sher… OH 117 2465 29389 2020 TRUE TRUE 2006 FALSE
#> 3 Burr Rich… NC 117 2466 29548 2020 FALSE FALSE 2004 FALSE
#> 4 Baldwin Tammy WI 117 2456 29940 2020 TRUE TRUE 2012 TRUE
#> 5 Boozman John AR 117 2463 20101 2020 FALSE FALSE 2010 FALSE
#> 6 Blackbu… Mars… TN 117 2459 20351 2020 FALSE FALSE 2018 TRUE
#> 7 Barrasso John WY 117 2457 40707 2020 FALSE FALSE 2007 FALSE
#> 8 Bennet Mich… CO 117 2458 40910 2020 TRUE TRUE 2009 FALSE
#> 9 Blument… Rich… CT 117 2460 41101 2020 TRUE TRUE 2010 FALSE
#> 10 Booker Cory NJ 117 2462 41308 2020 TRUE TRUE 2013 FALSE
#> # ℹ 90 more rows
#> # ℹ 49 more variables: afam <lgl>, latino <lgl>, votepct <int>, chair <lgl>,
#> # subchr <lgl>, seniority <int>, state_leg <lgl>, state_leg_prof <dbl>,
#> # maj_leader <lgl>, min_leader <lgl>, votepct_sq <int>, lagles <dbl>,
#> # power <lgl>, freshman <lgl>, sensq <int>, deleg_size <int>,
#> # party_code <int>, bioname <chr>, bioguide_id <chr>, born <int>, died <int>,
#> # dwnom1 <dbl>, dwnom2 <dbl>, meddist <dbl>, majdist <dbl>, cbill2 <int>, …